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Effects of surface film on the linear stability of an
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The linear stability of turbulent shear flow over a film-covered sea surface is studied
theoretically. A compound matrix method (Wheless & Csanady 1993), is used to solve
the eigenvalue problem numerically. The numerical method has been adjusted to a
coupled air–sea system. In the stability problem the vertical component of the
turbulent Reynolds stress has been taken into account. As pointed out by Wheless &
Csanady, the second derivative of the traditional log–linear wind profile has a rather
extreme behaviour near the matching point of the linear and logarithmic part. To
improve the model, a new profile is calculated based on an eddy viscosity distribution
for channel flow (Quarmby & Anand 1969), which has continuous derivatives all the
way down to the surface. Calculations of the wave growth rates corresponds well with
earlier theoretical results as well as laboratory measurements. The energy flux from the
air to the sea caused by the pressure work at the surface has been calculated. An
intriguing result obtained here is that this flux seems to be strongly dependent on the
elastic property of the surface film. The flux attains a maximum for finite values of the
film elasticity parameter.

1. Introduction

The damping effect of oil on waves has been known for at least two thousand years
and references may be traced back to Aristotle (Plutarch 95 AD). For people who are
dependent on the ocean for fishing and hunting, this effect is well known. One story
from the fishing community Hamingberg in northern Norway tells about a life-saving
exploit in 1894 where thirty-four lives were saved during a heavy winter storm. The
crew of the rescue boat constantly poured cod liver oil around the open fishing vessels
to calm the sea so the men could be hauled on board. In antiquity, Mediterranean pearl
divers used to release oil from beneath the water. When it rises to the surface, the
ripples disappear, which improves the sub-sea light conditions. For further reading the
historical review by Scott (1977) is recommended.

The first mathematical model was formulated by Lamb (1932), who calculated the
viscous damping rate for two extreme cases : a clean surface and an inextensible surface
film, assuming that the upper threshold value would be obtained in the latter case.
Dorrestein (1951) showed that this was not so. He calculated the damping rate for
general values of the surface elasticity modulus and found that maximum damping
occurs for finite values of this parameter. The damping was shown to be exactly twice
that obtained for an inextensible film. This effect is related to the existence of
longitudinal elastic waves within the film (Lucassen 1982). Maximum damping occurs
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when the frequencies of the transverse capillary–gravity wave and the longitudinal film
wave nearly coincide (Dysthe & Rabin 1986).

The introduction of satellite oceanography and radar probing of the ocean surface
has renewed the interest in this topic. Oil slicks may be seen as dark patches on radar
images because the calming of surface ripples alters the radar backscatter. One severe
problem here is how to discriminate between petroleum spill and the naturally formed
surface films in the ocean.

The earliest mechanism suggested for wind generation of waves was the classical
Kelvin–Helmholz instability. This is modelled by uniform flows in the air and the
water, the flows being discontinues at the interface. Owing to the large difference in
density between air and water, this mechanism is unable to produce waves for wind
speeds below 6.8 m s−". Since waves are found at wind speeds below 1m s−", other
mechanisms obviously must be involved. Miles (1957a) successfully explained wave
generation for low wind speeds by calculating the growth rate for surface waves due
to shear instability of the air flow. He found the growth rate to be proportional to
rU"

c
r}rU!

c
r$, where U"

c
is the curvature of the wind profile at the point where the wind

speed and phase speed coincide (the critical point). Here the inviscid version of the
governing equation becomes singular. However, the Miles mechanism is incapable of
generating waves in the capillary–gravity regime because, for small wave speeds, the
critical point will be confined within the viscous boundary layer where the wind profile
is almost linear.

Benjamin (1958) extended Miles’ theory by taking the effect of molecular viscosity
at the boundary into consideration. Later Miles (1962) also calculated a growth rate
for capillary–gravity waves which is in good agreement with results from various
numerical calculations. For short waves the main agent for instability seems to be the
viscous shear stress at the surface.

The effect of a vertical turbulent Reynolds stress was investigated by Jacobs (1987),
van Duin & Janssen (1992) and Miles (1993), utilizing an eddy assumption for the
turbulent stresses. In these investigations the effect of velocity curvature on wave
generation was neglected. The energy transfer from the air to the sea in this case was
shown to be dependent on the vertical gradient of the eddy viscosity. One objective of
the present study is to incorporate this effect into a more general model for wave
growth.

It is a fact that most wave tank measurements are carried out in closed wind tunnels.
Here the measurements of Larson & Wright (1975) are particularly interesting, since
microwave backscatter is used for measuring the energy growth rate. This is in
principle the same technique as used in satellite oceanography for detection of surface
films. The present model is well adopted to conditions that occur in wind tunnels. This
is particularly so for the way we define our wind profile.

Taking one step at a time, a very simple model of the surface film is used. The effects
of solubility of the film material are entirely neglected, and the only parameter regarded
as important is the surface elasticity. This is believed to give at least a crude estimate
of the effect of surface films on the growth conditions for wind waves. Creamer &
Wright (1992) calculated the growth rate by using the Ricatti method which is a
different (but related) numerical technique for solving stiff differential equations. By
disregarding the turbulent Reynolds stress, and using a log–linear profile, the results
obtained with our compound matrix method are shown to be identical to those of
Creamer & Wright.



Effects of surface film on the stability of an air–sea interface 61

2. Mathematical formulation

2.1. Equations of motion

Both air and water are taken to be incompressible homogenous viscous fluids. A
Cartesian coordinate system is chosen with the z-axis positive upwards. The (x, y)-axes
are situated at the undisturbed surface, and the basic flow and the wave propagation
are both in the positive x-direction. The motion occurs in the (x, z)-plane, and the
solutions are taken to be periodic in x. The governing equations for air and water are

Du
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Here u¯ (u,w) is the velocity, D}dt is the material derivative, T denotes the transpose
and the subscripts a and w indicate the air and water, respectively. The constant fluid
density is ρ, and p is the dynamic pressure. The kinematic viscosity coefficient for air
is traditionally written as (Jacobs 1987; van Duin & Janssen 1992; Miles 1993)
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where ν
o
is the constant molecular value, and ν

e
(z) is the turbulent eddy viscosity which

is assumed to vary with z only. For water, ν
w

is taken to be constant.
Perturbing the basic flow U(z), and assuming small disturbances u, w, p so the

equations can be linearized, the system of equations for the perturbed problem now
becomes
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Here the primes denote the differentiation with respect to z. In these equations the
subscripts a and w have been deleted since the equations are valid for both air and
water. Since the motion is two-dimensional and incompressible, we may introduce a
stream function ψ such that
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Applying normal mode decomposition, we write the stream function as

ψ¯ } (z) eik(x−ct), (8)

where k is a real wavenumber and c is the complex phase velocity. Eliminating the
pressure from equations (4) and (5), we obtain a fourth-order equation for the
amplitude function:
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For laminar flow, ν is constant. Equation (9) then reduces to the well-known
Orr–Sommerfeld equation.

2.2. Boundary conditions

At the surface, the horizontal and vertical velocity components must be continuous.
Also, the stress differences across the interface have to be balanced by the stresses
within the film. For the basic flow, the kinematic condition at the interface implies that

U
a
(0)¯U

w
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o
, (11)

where U
o

is the surface drift (assumed to be constant in time). The condition on the
horizontal stress gives
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For the total velocity to satisfy the continuity condition at the surface z¯ ζ, we must
require to first order that
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The dynamic boundary condition in the vertical direction states that the difference in
normal stress on each side of the surface must be balanced by surface tension, i.e.
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where σ is the surface tension and µ¯ ρν is the dynamic viscosity. The perturbation
pressure may be obtained from (4). Writing the pressure as p¯P(z) eik(x−ct), we find

P¯ ρ9(c®U ) } «­U «} ­
ν

ik (0 d#

dz#
®k#1 } «­

ν«
ν 0 d#

dz#
®k#1 } *: . (16)

Within the viscous boundary layer the turbulent Reynolds stresses vanish, and
accordingly ν« must be zero at the surface.

Allowing the surface to be contaminated, i.e. covered by a surface film, the difference
in tangential stress across the interface must be balanced by the surface tension
gradient. In the linear approximation,
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The surface tension gradient is related to the fluid velocity at the surface by introducing
the complex surface dilational modulus E, defined as
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Here A is the area per molecule of film material (Lucassen 1982). The real part of E
represents the film elasticity and the imaginary part describes the phase shift between
the areas of maximum surface dilation or compression and the variable part of the
surface tension. Assuming linear motion, conservation of film material implies
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Now equations (11), (12), (16) and (19) may be used to express the four boundary
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conditions (13), (14), (15) and (17) at the surface in terms of the stream function (8).
We then obtain the following boundary conditions to be satisfied at z¯ 0:
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Far away from the surface we assume that the velocity perturbations vanish.
Accordingly, we take

} , } «U 0 when rzrU¢ (24)
in both air and water.

In this study we will restrict ourselves to include only real values of E, since for most
films with moderate values of the surface dilational viscosity, the real part seems to be
the most important parameter for the wave-damping characteristics. The magnitude of
the surface elasticity may vary between zero (clean surface) and at least 50 dyn cm−".
Hu$ hnerfuss, Lange & Walter (1985) have measured the surface elasticity for different
chemical compounds and have obtained values of more than 80 dyn cm−". When the
wavenumber is of order 1 cm−", elasticity values of this magnitude will make the terms
that include E dominate any other terms in the boundary condition (22).

2.3. Mean wind profiles

To model the atmospheric surface layer flow in order to investigate the stability of the
air–sea interface, a log–linear profile originally suggested by Miles (1957b) has become
more or less standard. The basic profile is obtained by matching a profile which is
linear in the viscous boundary layer with one which becomes asymptotically
logarithmic. The two profiles are matched at the height z

o
, which is a measure of the

thickness of the viscous boundary layer. It is defined as

z
o
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where uk is the friction velocity in the air. The parameter m is of order unity, and values
vary from five to eight in the literature. The basic wind velocity profile is given as
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Wheless & Csanady (1993) report that the compound matrix method could not cope
with this wind profile, claiming that this is caused by the near-discontinuity of the
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second derivative of the mean velocity U"
a

at the matching point. For this reason, and
because the overall behaviour of the log–linear profile is unrealistic near the matching
point, they constructed a new mean velocity profile with a small second derivative. This
new profile is based on an integrated error-function, and is written
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)) and U¢ is the asymptotic value. Note that in this profile

the second derivative does not vanish at the surface.
When implementing the compound matrix method, we had no problems with the

log–linear profile. As shown later, the method produced results which were in very
good agreement with those of Creamer & Wright (1992). The failure of the log–linear
profile in the calculations of Wheless & Csanady is therefore not clear to us. However,
it is true that the second derivative of the log–linear profile has a rather extreme
behaviour when approaching the viscous sublayer. Especially for capillary–gravity
waves, which have the critical point in this region, this behaviour is unsatisfactory.

The growth rate values obtained by Wheless & Csanady are much larger than the
numerical results obtained with the log–linear profile and they suggest that the cause
for this might be the velocity profile differences. If this is true it means that the growth
rates are very sensitive to changes in the shape of the wind velocity distribution. To
resolve this problem we need to compare with the results from a velocity profile which
does not suffer from the unphysical behaviour of the log–linear and the error-function
profiles, i.e. it must have a smooth second derivative which approaches zero at the
air–water interfaces. For this purpose a wind profile based on the eddy viscosity for
channel flow by Quarmby & Anand (1969) has been chosen. This profile is also suitable
for comparing with experimental data. here the eddy viscosity is defined as
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Denoting the distance to the centre of the channel by r
o
, the non-dimensional

parameters in (28) are defined as
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Using the equation of motion for two-dimensional, stationary channel flow, the wind
velocity profile may now be calculated from
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In figure 1(a) the velocity profiles for uk¯ 15 cm s−" are compared. Figure 1(b) is a
close-up of the viscous boundary layer, and depicts the behaviour of the second
derivative. In the log–linear profile the value of m is 5.5, and in the new profile r

o
is

15 cm, corresponding to the size of the wave tank used in the experiments of Larson
& Wright (1975).

2.4. Basic �elocity profile in the water

Assuming constant wind stress at the surface and laminar flow independent of x, the
equation of motion for water initially at rest is
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F 1. Comparison between the channel-flow profile (solid line), error-function profile (dotted
line) and the log–linear profile (broken line) for uk¯ 15 cm s−". (b) is a close up of the second
derivative near the air–water surface.

For an infinitely deep ocean the boundary conditions are
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We note that U
w

never will tend toward a steady state. However, in our description up
to now we have assumed a time-independent basic flow in both air and water. For that
reason (35) must be used as a quasi-stationary function at a fixed time point, say a few
seconds after the onset of the wind stress. We realize of course that by including the
Coriolis force, a steady Ekman flow will develop in the water. However, the time scales
considered here are much smaller than the inertial period, so we can safely neglect the
effect of the Earth’s rotation.

If (35) is used when solving the stability problem numerically, both the profile and
its derivatives must be calculated by numerical integration at each grid point. This will
make the program extremely time consuming. For this reason, and because we assume
that the exact form of the water profile is of secondary importance in this problem, (35)
will only be used for calculation of the surface drift U

o
. When calculating the

eigenvalues, a very simple basic water velocity distribution, starting with U
o

at the
surface and decaying exponentially, will be used, i.e.

U
w

¯U
o
exp (2z}L

s
). (36)
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t)"/# is the viscous boundary layer thickness after t s. This is the same

expression for U
w

as suggested by Wheless & Csanady (1993).
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3. Numerical method

For large Reynolds numbers the physical problem will be dominated by two distinct
length scales. This makes (9) a so-called stiff differential equation. When trying to solve
this as an initial-value problem with a standard shooting method, the solution will be
contaminated by the rapidly growing viscous solution. This will lead to parasitic
growth (Drazin & Reid 1981). To overcome this problem a compound matrix method
as suggested by Ng & Reid (1979) has been used. The idea is to do a nonlinear
transformation of the eigenvalue problem based on the 2¬2 minors of a solution
matrix.

After an initial guess for the eigenvalue c is implemented, an iterative method is used
to vary the eigenvalue till the boundary conditions are satisfied. The calculations were
interrupted when the relative error was less than 10−). The starting distance from the
surface was varied in the calculations until no change in the eigenvalue was observed.
Taking ν

o
}uk as a measure of the viscous layer thickness, a distance of 200 times this

quantity was usually sufficiently far from the surface for starting the calculations. This
interval was divided into 2000 steps in both air and water. A detailed description of
how the compound matrix method is adapted to a wavy boundary problem is given in
the Appendix.

4. Results obtained with a constant viscosity

Before the effect of a variable turbulent eddy viscosity was included, it was decided
to test the ability of the numerical program to reproduce results from earlier studies,
and to sort out how important details of the wind velocity distribution are for the
resulting growth rate. The most commonly used air velocity profile is the log–linear
profile (26). This is the one also used by Creamer & Wright (1992), who solve the
problem numerically with a Ricatti method. As mentioned before, Wheless & Csanady
(1993) failed to incorporate this profile in the compound matrix method, and claim that
this is caused by the near-discontinuity in its second derivative. This is peculiar,
because the second derivative of the log–linear profile is actually not discontinuous.
The second derivative does have a corner point at the matching point z

o
, which means

that the third derivative is discontinuous here, but the third derivative does not appear
equation (9). Furthermore, why does the Ricatti method manage to overcome this
problem while the compound matrix method according to Wheless & Csanady fails?

We found this question intriguing, and decided to give the log–linear profile a second
try. The outcome was that this profile gave no problems whatsoever, and it even
produced results which are in good agreement with those of Creamer & Wright. Figure
2(a) shows the results for the film-free case with four different values of the friction
velocity uk : 13.6, 16.9, 21.3 and 24.8 cm s−". The surface drift velocity is 7.5, 9.6, 9.8
and 10.2 cm s−", respectively. Here the growth rate is defined as

β¯ 2k Im c. (37)

The values of the parameters are g¯ 980.1 g s−#, σ¯ 72 dyn cm−", ν
w

¯ 10−# cm# s−",
ν
a
¯ 0.15 cm# s−", ρ

w
¯ 1 g s−# cm−" and ρ

a
¯ 1.2 10−$ g s−# cm−". These values cor-

respond to those used by Creamer & Wright in producing figure 4 of their paper. As
far as we are able to judge, the results are identical.

Figure 2(b) shows the results for uk¯ 24.8 cm s−" for the film-free case together with
the inextensible film case (EU¢), and the cases E¯ 5 dyn cm−" and E¯ 20 dyn cm−".
These values are the same as those used to produce figure 5(a) in Creamer & Wright
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F 2. Growth rate calculated by use of the log–linear wind-velocity profile (28). (a) E¯ 0 and
various values of uk in cm s−" ; (b) uk¯ 24.8 and various values of E in dyn cm−".

(1992). Also in this case the results are almost identical to those of Creamer & Wright.
The conclusion so far is that the compound matrix method is fully capable of handling
the log–linear profile.

In figure 2(b), the graph for E¯ 20 dyn cm−" has a sharp peak and an inflection
point which is not found in the others. The explanation for this is probably the so-
called Marangoni effect which for a finite elasticity value gives a maximum in the
damping ratio for a finite wavenumber. This maximum in damping ratio is more
pronounced and is shifted toward longer waves when the film elasticity is increased.
For E¯ 20 dyn cm−" the maximum appears as a sharp peak with maximum near
k¯ 1 cm−" with a particularly strong damping in the wavenumber band between
k¯ 0.5 and 1.5 cm−", which coincides well with where the growth rate for E¯
20 dyn cm−" suddenly drops. For E¯ 5 dyn cm−" the damping ratio has a maximum
for k¯ 4 cm−", but this maximum is much weaker and does not appear as such a sharp
peak in a narrow band of the wavenumber space. near k¯ 3 cm−" the damping for
E¯ 5 dyn cm−" exceeds the damping for E¯ 20 dyn cm−" which is close to where
the growth rate curves for these elasticity values cross (for details on wave damping
and surface films, see Herr & Williams 1986).

The relatively high growth rate values obtained by Wheless & Csanady seem to
somewhat be confirmed by the experimental results of Larson & Wright (1975). In their
figure 12 Wheless & Csanady compared the results for uk¯ 15 cm s−", together with
the numerical results of Kawai (1979) for uk¯ 17 cm s−". From this plot, which is
reproduced in figure 3(a) of the present paper, their numerical results appear to be in
rather good agreement with the measurements of Larson & Wright, while the growth
rates calculated by Kawai are far too low. However, this agreement seems to be false :
the results of Larson & Wright which are energy growth rate values, 2kc

i
are compared

with the amplitude growth rate values, kc
i
, of Kawai and Larson & Wright. Figure 3(b)

shows the adjusted curves expressed as amplitude growth rates.
The growth rate values calculated by Wheless & Csanady are almost a factor of four

larger than the results obtained Kawai (1979) and Creamer & Wright. Also, van
Gastel, Janssen & Komen (1985) who solved the instability problem by asymptotic
methods found that changes in the shape of the wind profile can change the growth rate
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line) are compared to the measurements of Larson & Wright (broken line) and the numerical results
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compared to the results of Wheless & Csanady (broken-dotted line), the channel-flow profile (dotted
line) and the log–linear profile (broken line). The friction velocity is 15 cm s−".

by a factor of more than three. But in their study the estimate was based on a
comparison with a wind profile that is linear outside the viscous boundary layer. To
see how sensitive the growth rate is to the exact shape of the wind profile, comparison
will be made with the three profiles described in §2.3, which all have a more realistic
behaviour outside the viscous boundary layer.

In figure 4 the results of this study using the integrated error-function profile (27),
the log–linear profile (26) and the new profile given by (30) are compared with earlier
results. When applying (30) to produce this plot, the eddy viscosity was only used when
calculating the basic velocity profile. In the equations the molecular values were
inserted for the viscosities. here uk¯ 15 cm s−", σ¯ 75 dyn cm−" and U

o
¯ 6.8 cm s−".
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wavenumber is 3 cm−".

The other parameters are unchanged. As can be seen, the results are quite different
from those of Wheless & Csanady. The differences produced by the various wind
distributions are about 23%. It is also worth noting that the program has been tested
with a velocity profile which grows linearly outside the viscous boundary layer, and it
produced results similar to those of van Gastel et al. Since the results of Wheless &
Csanady are very far from both the other numerical studies and the laboratory study
of Larson & Wright, it is most likely that the calculations of Wheless & Csanady are
erroneous.

So far comparison with previous results have been done only for the friction velocity
15.0 cm s−". The results have also been compared for uk¯ 18.0, 21.0 and 24.0 cm s−",
and are qualitatively the same.

From the present study it may be seen that the growth rate is not strongly sensitive
to changes in the shape of the basic velocity profile. The differences produced by the
various wind velocity profiles was about 23%. This result is quite encouraging,
especially since our knowledge of the wind profile in a real situation is rather poor.
These results may indicate that a simple velocity profile like the log–linear one, gives
an adequate representation of constant wind distribution with height over open water
as far as growth rates are concerned.

In figure 5(a) the real and imaginary parts of the eigenfunction for uk¯ 24.0 cm s−"

are shown. To demonstrate the exponential decay of the form e−kz, the vertical axis is
scaled with the wavenumber which is equal to 3 cm−" in this case. Figure 5(b) is a close
up of the rapid variation close to the boundary, and is scaled with the viscous boundary
layer thickness

γ¯ (ω}2ν
a
)"/#. (38)

5. Effect of a variable eddy viscosity

As mentioned earlier, the effect of an eddy viscosity which is increasing with height
has been studied by among others Jacobs (1987), and van Duin & Janssen (1992). In
both papers analytic solutions to the instability problem are found. To achieve that, the
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effect of molecular viscosity and curvature of the basic wind profile on the wave
generation are neglected. In the study by Jacobs the model for the eddy viscosity is
taken to be

ν
e
¯ κuk z, (39)

where κ is von Ka! rma! n’s constant. Van Duin & Janssen considered a family of closure
models which includes (39). It is important to note that when used in a logarithmic
velocity profile, these closure models will all give the same basic eddy viscosity as (39),
with a linear growth with height. In the study by van Duin & Janssen, the effect of
different closure models on the growth rate enters only through the perturbation eddy
viscosity, and in this way modifies the result given earlier by Jacobs. For moderate
wind speed the effect of a variable eddy viscosity is the only mechanism capable of
generating waves in this model.

To test the ability of this approach to reproduce earlier results, the model has been
modified to resemble the one given by Jacobs (1987) as much as possible. When
calculating the boundary condition, the velocity profile in the air is then kept at a
constant value everywhere except at z¯ 0, where the velocity is zero. As in the paper
by Jacobs, the velocity value 1}k above the interface has been used. This is calculated
from the logarithmic formula

U
a
¯

uk
κ

log 0 z

z
o

1 . (40)

For the eddy viscosity, equation (39) has been used. The result by Jacobs is

2kC
i
¯ 2kεκsC

r0V®C
r

V 1 0V

C
r

1#, (41)

where s¯ ρ
a
}ρ

w
and C

i
,C

r
are the imaginary and real parts of the complex phase

speed, respectively. These must be distinguished from c defined in §2 since here the
dissipation in water has not been taken into account and the result is only valid for the
rate of pressure work done at the surface, divided by energy density of the waves.
Furthermore, V is the wind speed at distance 1}k above the surface and ε¯ uk}V
which corresponds to the square root of the drag coefficient. Now, since our model
includes the dissipation of energy in the water, the program will be run twice, first with
the linearly growing eddy viscosity, and then with the varying eddy viscosity switched
off. The latter case resembles the classical Kelvin–Helmholz model except for the
inclusion of molecular viscosity, and is not expected to give rise to any flux of energy
from the air to the water at these wind speeds (V! 6.8 m s−"). By calculating the
difference in growth}damping rate in these two cases, the flux from the air to the sea
at the surface caused by the linearly growing eddy viscosity should be obtained. The
result is shown in figure 6 together with the result obtained from (41). One must
remember that this method is not identical to the model described by Jacobs. This case,
for instance, also includes viscous dissipation of energy in the air. With this taken into
account, it seems as the main features of the result given by (41) is well reproduced with
this approach.

When deriving equation (9) the wave-induced perturbation eddy viscosity was not
included. Also, the formula obtained by Jacobs may be found without considering this
part of the eddy viscosity. Actually, this will lead to a discontinuity in the pressure
across the outer and inner layers. However, it can be shown that, if the mean eddy
viscosity is taken into account, the pressure at the surface can be obtained from the
outer-layer pressure by letting zU 0. Van Duin & Janssen included the perturbation



Effects of surface film on the stability of an air–sea interface 71

0

0.02

2 4 6

k (cm–1)

2k
C

i (
s–1

)
0

0.04

0.06

0.08

0.10

F 6. Results obtained by the formula from Jacobs (broken line) compared to the results
obtained numerically (solid line) with a velocity profile which is constant with height. The friction
velocity here is 15 cm s−".

0

0.1

0.6

2 4 65

k (cm–1)

0.7

b  
(s

–1
)

31

0.2

0.3

0.4

0.5

F 7. Growth rate calculated by use of the channel-flow profile (33) and variable eddy viscosity
(solid line) compared to the results obtained with a constant viscosity (broken line). The friction
velocity is 15 cm s−".

eddy viscosity in their study: they obtained the same formula as Jacobs (41), but with
a small additional correction term caused by the perturbation viscosity. Since the
perturbation eddy viscosity is unknown, an assumption has to be made on how it
should be related to the mean velocity field. Therefore, to avoid introducing one more
uncertain assumption, the perturbation eddy viscosity will not be taken into account
in this paper.

The results are shown for uk¯ 15 cm s−". However, qualitatively the results are the
same for other values of the friction velocity. The velocity profile is taken to be the
channel-flow profile (30). Figure 7 shows the growth rate when the effect of a turbulent
eddy viscosity is included. The eddy viscosity is calculated from (28) and the results are
compared with those obtained from the same model with only the molecular value for
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the viscosity. As can be seen, the growth rate obtained with a constant viscosity exceeds
the result when a varying eddy viscosity is included. Based on the results obtained by
Jacobs and by van Duin & Janssen, the inclusion of a variable eddy viscosity was
expected to increase the resulting growth rate by approximately the same order of
magnitude as the values obtained in those studies. The surprising result here is that
when the effect of a variable eddy viscosity is included in a model which also includes
curvature of the wind profile and the dynamics of the viscous boundary layer, the basic
eddy viscosity term will slightly reduce the wave growth. Miles (1993) calculated the
energy transfer in a model which included contributions from both the curvature of the
wind profile and variable eddy viscosity, but the contributions were calculated
independently by neglecting the critical-layer component when calculating the eddy
viscosity component and vice versa. This resulted in two terms in the growth rate
formula: one eddy viscosity component, equal to the Jacobs formula, and one critical-
layer component. If the results obtained in this study are correct, it may indicate that
an approach where effects such as the curvature of the velocity profile and molecular
viscosity are neglected is too idealized to adequately model the effect of a variable eddy
viscosity on the initial growth of short waves in moderate wind conditions. The results
by Jacobs disagree with the present study on whether this effect enhances or restrains
wave growth, but in both studies the magnitude of this effect is small. The main
contribution to the wave growth for short waves in the capillary–gravity regime, for
which the critical layer is inside the viscous boundary layer, seems to arise from the
dynamics of this viscous sublayer itself. This is also in accordance with the conclusions
by several earlier authors, e.g. Phillips (1977).

6. Energy flux

The energy transfer from the air to the sea is calculated from the work done at the
surface by the pressure part in phase with the wave slope, divided by the energy density
of the waves, Ω¯ ζ#

!
(ρ

w
g­σk#)}2. The energy flux is

F¯P
i
}
r
}Ω, (42)

where i denotes the imaginary and r the real part. Since both pressure and
eigenfunctions are proportional to ζ

o
the amplitude will cancel in (42). In figure 8(a)

the result for the energy flux vs. film elasticity for a fixed wavenumber (k¯ 3 cm−")
is shown. Here four different values of uk have been used. A striking feature is
the maximum in energy transfer for finite values of the elasticity modulus, near
EE 5 dyn cm−", which shows how the flux is dependent on the elastic properties of the
film. It is interesting to compare this behaviour with the maximum damping obtained
for finite values of the film elasticity in the absence of wind. The damping is given by

β
int

¯®
kω

4γ 0 2α#

1®2α­2α#

­
k

γ

4(1®α)

(1®2α­2α#)1 , (43)

where α¯
γk#E

ρ
w

ω#

(44)

is a non-dimensional elasticity parameter, see Weber & Saetra (1995), and γ is given
by (38). For a fixed wavenumber the result (43) yields a maximum for a finite value of
the film elasticity parameter. Here α is constructed in such a way that this maximum
is attained when α¯ 1. When maximum damping occurs the frequency of the elastic
film wave (Marangoni wave) is almost equal to the frequency of the transverse wave.
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Whether this maximum in energy transfer is in any way related to the Marangoni
wave is not yet clear. In figure 8(b) β

int
vs. film elasticity for k¯ 3 cm−" calculated from

(43) is shown. As can be seen the maximum in energy transfer occurs for smaller
elasticity values than the maximum in damping.

A maximum in energy transfer for a finite surface elasticity implies that in the case
of a surface film with low concentration of surfactant, the conditions for wave growth
are improved compared to a clean surface. However, in most cases the enhanced
damping caused by the film will dominate this effect and prevent the waves from
growing.

In figure 9 the ratio of the flux with a surface film, denoted by F s, to the flux in the
film-free case, denoted by Fo, has been plotted as a function of wavenumber for four
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different values of the film elasticity. Again the friction velocity is 15 cm s−". Like the
maximum in damping according to (43), the maximum in energy flux is also shifted
towards low wavenumbers when the film elasticity is increased.

7. Comparison with laboratory studies

Measurements of growth rate for wind-generated waves in a wave tank has been
carried out by various authors. For the case with no surface film, extensive
measurements of initial wave growth the first few seconds after the onset of the wind
have been carried out by Larson & Wright (1975), using a microwave backscatter
technic. This is in principle the same as the one used in satellite oceanography. In the
case with a surface film of sodium lauryl sulphate solution the growth rate has been
measured by Gottifredi & Jameson (1970). By measuring the surface tension as a
function of concentration, the film elasticity was calculated from an expression
equivalent to (18). The effect of both artificial and naturally formed surface slicks on
radar backscatter in a real ocean and in wave a tank have been investigated by
Hu$ hnerfuss and co-workers (see for instance Alpers & Hu$ hnerfuss 1989). In these
papers fully developed wave spectra are considered, and comparison with a model for
initial wave growth would probably be rather dubious at the present stage.

In figures 10(a) and 10(b) the measured growth rate values of Larson & Wright for
friction velocity values of 15 and 21 cm s−" are compared with the theoretical results
obtained from the channel-flow profile with a variable eddy viscosity and log–linear
profile with a constant viscosity. For these moderate wind-velocities the theoretical
values seem to be in fairly good agreement with the results from the wave-tank
experiments. For stronger winds on the other hand, the theoretical approach seems to
fail completely. In figures 11(a) and 11(b) the theoretical results for friction velocities of
66 and 125 cm s−" are compared to the values obtained in the experiment of Larson &
Wright. As can be seen, the growth rate figures calculated from the stability problem
exceed the values obtained in a wave tank by several orders of magnitudes.

Donelan & Pierson (1987) have pointed out that the friction velocities quoted by
Larson & Wright are too large and they claim that this is because they were measured
at steady state after the spectrum had attained its fetch limit. Another explanation for
these high friction velocities may be found in the way they were calculated from the
wind velocity profile. Larson & Wright calculated the friction velocities from the slope
of the measured wind velocity profile plotted with logarithmic values on the z-axis, in
accordance with the assumption that the profile has a logarithmic distribution over all
the part which is used for calculating the friction velocity values. Since the air flow in
a wind tunnel is of a turbulent Poiseuille type, the error introduced by using this
method for calculating the friction velocities will probably be most pronounced for the
cases of large wind speeds, since then the core region will occupy a greater part of the
flow section.

If the continuous velocity distribution is known, the friction velocity may be
calculated from the relation

U
m
®U

a
¯F(U, uk, z)¯ 0, (45)

where U
m

is the measured wind velocity at the elevation z from the surface, and U
a

is
the theoretical velocity distribution. Now if we follow this idea, a better friction
velocity value should be obtained with the use of equation (30) for U

a
in (45) instead

of a pure logarithmic distribution. When this method is applied to the wind velocity
measurements plotted in figure 11 in the paper by Larson & Wright the result is almost
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the same for the two cases of low wind speed: for uk¯ 15 cm s−" this method yields the
same result and where Larson & Wright report a friction velocity of 27 cm s−" the result
with this method is approximately 22 cm s−". Although the result is somewhat lower in
the last case, the difference is not more than what could be caused by errors when trying
to extract the velocity values from figure 11 in Larson & Wright. Really significant
differences are first obtained when we proceed to the two cases with large wind velocity
values. In table 1(a) the friction velocities calculated at different elevations from the
surface with the new method are listed together with corresponding wind speeds for the
case where the slope method yields a friction velocity of 66 cm s−". The mean value
obtained with this method is a friction velocity of 38 cm s−". Table 1(b) shows similar
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(a)
z (cm) 1.1 1.3 1.5 2.0 2.4 3.0 4.0
U (cm s−") 620 650 675 715 740 760 800
uk (cm s−") 34.7 35.5 36.2 36.9 37.2 37.2 37.7

z (cm) 5.7 7.2 9.0 10.1 12.1 14.0
U (cm s−") 845 900 930 950 975 970
uk (cm s−") 38.1 39.2 39.4 39.7 40.0 39.5

(b)
z (cm) 3.1 3.6 4.1 5.2 6.3 8.1 10.2
U (cm s−") 985 1025 1070 1125 1190 1275 1350
uk (cm s−") 46.9 47.8 49.0 50.0 51.4 53.3 54.8

z (cm) 11.7 13.0 15.0
U (cm s−") 1405 1430 1450
uk (cm s−") 56.2 56.7 57.1

T 1. Friction velocity values calculated from (45) in the cases where the slope method yields a
friction velocity of (a) 66 cm s−", (b) 125 cm s−".

results for the case where the slope method yields uk¯ 125 cm s−". The mean value
obtained in this case is a friction velocity value of 52 cm s−".

In figures 12(a) and 12(b) the theoretical results obtained with the adjusted friction
velocity values are plotted together with the measurements. In these cases the growth
rate figures calculated with the reduced friction velocity values are in good agreement
with the results obtained in a wave tank.

In figure 13 the results from this study are compared to measurements of Gottifredi
& Jameson (1970). Here the waves were generated mechanically, and then subjected to
the wind. The plot shows the growth rate as a function of friction velocity for a
constant wave frequency, 6.20 Hz. The wavenumber has been calculated from equation
(2.10) in Gottifredi & Jameson. The symbols refer to two different solutions with
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surface tension σ of 58 dyn cm−" (circles) and 34 dyn cm−" (squares), respectively. The
open symbols are measurements taken 46 cm from the wavemaker, while the solid
symbols are taken 106 cm from the wavemaker. The surface elasticity E is reported to
vary between 15 and 37 dyn cm−". The solid line shows the theoretical results with
15 dyn cm−" for the surface elasticity and 58 dyn cm−" for the surface tension, and the
broken line shows the corresponding results for E¯ 37 dyn cm−" and σ¯ 34 dyn cm−".

8. Discussion and concluding remarks

The compound matrix method seems to be well suited for studying the air–sea
interaction problem of the initially growing waves. It has been demonstrated that the
growth rate figures calculated with the use of a standard log–linear profile are more or
less identical to the numerical results obtained by Creamer & Writer (1992) with the use
of a Ricatti method and the same wind profile. The sensitivity of the model to different
wind velocity profiles has been tested by comparing the results from three specific
choices for the wind distribution. The outcome confirms that the growth of waves in
the capillary–gravity regime is not strongly dependent on the exact shape of the
velocity profile outside the viscous boundary layer. This is in contradiction to the results
reported by Wheless & Csanady (1993), who obtained results with the same numerical
method which are almost four times larger than the results obtained here. For waves
which have their critical point inside the viscous boundary layer, it has been a usual
assumption that the instability is a result of the dynamics of this layer. If this is so, it
seems reasonable to expect that small details of the behaviour of the wind velocity
profile in the logarithmic region are of minor importance for such waves.

One problem which arises when the turbulent Reynolds stresses are introduced is
how to distinguish between the periodic motion induced by the waves, and the
fluctuations due to turbulence. If the periods of these two phenomena are of the same
order of magnitude, it will in practice be impossible to separate the wave-induced
motion from the turbulent fluctuations. To deal with this problem the periods of the
waves are assumed to be much longer than the typical time scale of the turbulent
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fluctuations. When judging the results presented here for the highest wavenumbers
when a turbulent Reynolds stress is included, this problem should be kept in mind.

A somewhat surprising result was that the inclusion of a variable eddy viscosity in
the air to some extent reduced the wave growth. In the analytical studies by Jacobs
(1987) and by van Duin & Janssen (1992) it was demonstrated that instability might
be caused by a positive gradient of the eddy viscosity. One cause for this disagreement
might be the simplifications which had to be introduced to be able to find analytical
solutions of the equations, but at present more investigations need to be carried out
before any definite conclusions about the effect of a variable eddy viscosity on growing
waves can be drawn.

The flux of energy from the air to the sea was calculated from the stress perturbation
at the surface. The interesting result here was that the latter part had a strong
dependence on the elasticity of the surface film. Such a Marangoni effect on the rate
of work done by the external forces has not been reported. Just like the Marangoni
effect on the dissipation of wave energy, the flux term attains a maximum for a finite
value of the film elasticity. The maximum of the dissipation rate appears when the
frequencies of the longitudinal film wave and the transverse capillary–gravity wave
coincide. The maximum of the flux does not seem to have any such simple relation to
the Marangoni wave. When studying how a surface film changes the wave spectrum of
the ocean, this effect should probably be taken into account.

A comparison with the measurements of Larson & Wright (1975) and Gottifredi &
Jameson (1970) confirms that the present model adequately describes the linear
stability of an air–sea interface initially at rest, both for a clean surface and when the
surface is contaminated with a surface film. This seems also to be the case for the
highest wind speed reported by Larson & Wright if the friction velocity is calculated
from a channel-flow profile, using the dimensions on the actual wave tank, instead
from a pure logarithmic profile. Since the wind, generated by a fan in a wind tunnel,
must attain a maximum near the centre of the tunnel, a channel-flow profile such as the
one suggested by Quarmby & Anand will probably give a better description of the
actual air flow in this problem than a logarithmic distribution.

Although extensive measurement of film effects on waves have been carried out by
several authors, very little seems to have been done on the problem of initially growing
waves. The similarity between the numerical results and results obtained by Larson &
Wright (1975) and Gottifredi & Jameson (1970) are encouraging with respect to
verification of the theoretical model.
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for continuous support and guidance throughout this study. I also wish to thank
Professor Kristian Dysthe for introducing me to the laboratory studies of Gottifredi &
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Appendix. Compound matrix method

To solve the problem numerically, we formulate the differential equation as a system
of first-order equations. It is convenient to write the solution in air and water as linear
combinations of the viscous and inviscid parts of the solutions
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where K
i
are undermined constants. To avoid numerical growth caused by the rapidly

varying viscous solution a new set of variables is defined as
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When these are substituted into the differential equation, it can be solved numerically
with the use of a standard shooting technique. The problem is then regarded as an
initial value problem, and may be integrated with a fourth-order Runga–Kutta
method. Far from the surface, an analytic outer solution is found (for details see
Wheless & Csanady).

Drazin & Reid (1981, p. 313) give a general set of boundary conditions expressed in
terms of the new variables for one medium. For problems involving a coupled system
of two media over a wavy interface, Wheless & Csanady (1993) calculated the
boundary condition for the new variables for their particular choice of boundary
condition with no surface elasticity. Now a general expression for the eigenvalue
relation will be outlined, valid for any set of linear boundary conditions between two
coupled media.

Four linear boundary conditions may be expressed as
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where } (j−") means the j®1 derivative of } with respect to z. A new 4¬ matrix Q, with
the following elements may then be constructed:
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where the subdivision (A 1) for } has been introduced. The boundary conditions now
yield

DetQ¯ 0. (A 6)

When calculating this determinant by cofactor expansion the new variables will
appear. Then the resulting eigenvalue relation may then be expressed in terms of the
new variables as
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Here the subscripts a and w have been deleted since this formula is used for calculating
the coefficient A in both air and water.

Following Ng & Reid (1979) the coefficients K
"

and K
#

may be eliminated in four
different ways:

y
"
} §®y

#
} «­y

%
} ¯ 0, (A 9)

y
"
} ¨®y

$
} «­y

&
} ¯ 0, (A 10)

y
#
} ¨®y

$
} §­y

'
} ¯ 0, (A 11)

y
%
} ¨®y

&
} §­y

'
} «¯ 0. (A 12)
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To calculate the eigenfunctions from backward integration of for instance (A 9), the
eigenfunction and the first derivative at the boundary must be known. Using a
standard technique in linear algebra it is straightforward to show that only two of the
equations (A 9)–(A 12) are linearly independent. Accordingly, we need additional
information from the boundary conditions. Writing }

a
¯ }

w
¯ }

o
and using (A 9) and

(A 10) to eliminate } ¨ and } § in both air and water, the boundary conditions can be
written as

A

B

B

1

E

C

®1

F

D

A

G

C

D

A

B

} !
w

} !
a

}
o

C

D

¯ 0, (A 13)

where the coefficients must be calculated from the boundary conditions (16)–(18), and
substituting } §¯ (y

#
}y

"
) } «®(y

%
}y

"
) } and } ¨¯ (y

$
}y

"
) } «®(y

&
}y

"
) } . Gaussian elim-

ination of (A 13) now yields

} !
w

¯
D®AB

B­C
}
o
, (A 14)

} !
a
¯ } !

w
­A}

o
(A 15)

subject to the constraint

G(C­B)®F(D­E )­A(BF®CE )¯ 0. (A 16)

Finally, the kinematic condition, Dζ}dt¯w can be used to express }
o

in terms of an
arbitrary amplitude. In the linear case this is

}
o
¯ (c®U

o
) ζ

o
. (A 17)
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